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A Prediction Interval Approach to Defining Variables Sampling Plans for Finite
Lots Required to be of High Quality: Single Sampling for Gaussian Processes

by

Kenneth W. Fertig and Nancy R. Mann
ABSTRACT

A prediction-interval approach and an assumption of a Gaussian manufacturing
process are used to derive a variables sampling plan applicable to finite lots
required to be of very high quality. Values tabulated for calculating accept-
ance regions are such that, with high probability, accepted lots will have zero
defects, Further, tables are given for selecting sample size for a specified
combination of lot size and acceptable quality level. Comparisons show that,
for a fixed risk level, substantial savings in required sample size can be
effected over those specified by comparable hypergeometric sampling plans.

Lots ranging in size from 5 to 100 are considered.

Bounds for the probability of accepting a lot with a fixed number of defects
and coming from a prescribed manufacturing process are derived and prove to
be very tight. Not only are these bounds useful in defining the required
sample-size in the sampling plan context, but the method of derivation has

application to other areas of sampling, e.g. from truncated or stratified
distributions.

The research presented herein was performed at Rocketdyne, & Divizion or
Rookwell International, under the sponsorship of the Office of Naval Research,
Contract numeer NOOOLh-73-C-0h7h, Task NR-0bP-301,




1. INTRODUCTION

In the following, consideration is given to sempling from finite lots for
which the underlying process distribution is Gaussian with unknown mean
and variance. It is assumed that accepted lots are required to be of
very high quality, that is, with high probability, accepted lots chould
have zero defects. An item will be said to be defective if its measured
parameter, X, is less than some specified value L (greater than a specified

u).

Suppose one were to make no attempt to use the knowledge concerning the
distributional form of the process that generated the lot. Acceptance

or rejection of the lot would then be based solely on the attributes data,
i.e. whether or not the observed x's were less than L (or exceeded U). A
required sample size would probably be determined for a specified combina-
tion of lot size, rejectable quality level and acceptable quality level

by use of the hypergeometric distribution, perhaps from tables of Lieberman
“and Owen [8]. Use of binomial sampling plans which inherently make no
provision for the finite size of the lot, can lead to sample-size require-

ments that are unnecessarily large, perhaps even exceeding the lot size.

Here it is assumed that we record the variables data, the sample measure-
ments, Xps eees X of the normal variate that determines whether or not
an item is defective. One would expect that the required sample size
associated with a specified combination of lot size and acceptable quality
level based on the additional information Xps o eees X oand an assumption

of normality for the process distribution would be less than required
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solely on the basis of whether or not the x's are less than I (greater
than U). What is desired, therefore, is a small-lot variables sampling
plan (one that makes use of sample measured values and the distributional
form of the process) that can be applied to lots required to be of very
high quality. In the following, only a lower specification limit L will
be discussed. The theory developed can be applied to upper specification

limits by appropriate changes in notation and sign.

The small-lot Gaussian sampling plans of Fertig and Mann [3], the theory
for which is described in {5], are based on a decision-theoretic approach
and an economic loss function, Use of the loss function requires that
rejected lots be screened and defective items be replaced by nondefectives.
Because of this requirement, these sampling plans cannot be applied, for
example, to situations of destructive testing. The sampling plans to be
described in the sequel, however, do not depend on the utilization of a
loss function and can be used even if the sampling situation involves
destructive testing. Moreover, these plans are based on what will generally
be considered a more classical approach involving none of the Bayesian
methods required in the decision theoretic approach, e.g. the use of
"optimal" priors on the process parameters to compute the posterior

expectation of the number of defects remaining in the lot after sampling.

The new sampling plans are 'Double Zero" sampling plans in the sense
described by Ellis [2], that is, lots are required to have zero defects
with high probability and detection of a defect in a sample requires
rejection of the corresponding lot. Ellis [2] maintains that such plans,
which are used currently at Pratt and Whitney Aircraft, "are especially

effective in the metal working industry." The new plans differ from Ellis'




e verie sy

in that these are based on actual variables data while his are not and
here there is no consideration given to Ellis' "gray areas" of marginal

quality.
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2. BASIS OF THE SAMPLING PLANS

A sampling plan can be described in terms of its acceptance criteria and
the manner of specifying the sample size as a function of lot size and
given requirements on quality level. Illere, the .ppvoach used in defining
the acceptance criteria is based on the theory of classical prediction
intervals. Thus, for a sample of size n from a lot of size N, the sample
x_, are used to predict whether or not the N-n

1 0 g

unsampled items in the lot are all nondefective. The actual prediction

variables data x

interval is computed on the basis of the sampling distribution of

Ry en® XYy /S .1

where Yl,N-n is the smallest observable value of the random variate X in
the unsampled portion of the lot and X and S are the random variates with
realizations x and s, respectively, calculated from Xysenes Xpo If we let
» v )

be the 100yth percentile of R] then (Ylo

ey,n,N-n N, N-n’ Y,n,N~nS

is the 100y percent lower prediction interval for Yl Nen'

Methodology for relatively easy and inexpensive computer calculation

of was developed by Fertig and Mann [6]. The procedure

ey,n,N~n
depends on the numerical integration of a single integral (shown in
Section 5}, in contrast to the earlier approach of tlahn [7] which
involved a multivariate t-distribution and numerical integration of a

double integral.

Care must be exercised in the interpretation of a prediction interval,
Specifically, in this case it means that it pairs of samples of sizes n
and N-n are created repeatedly by the manufacturing process, the 100 Y
percent random prediction interval (Y-UY."'N_"S, + ) with X and §

“de
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computed from the first sample of size n of the pair, will contain Yl,N-n’
the smallest observable variate in the corresponding second sample of the
pair, 100y percent of the time. If the prediction interval contains the
smallest observation yl,N-n’ then of course, it contains all the observa-
tions in the second sample, the unsampled portion of the lot in the
present context.
2.1 Acceptance Criteria

For the sampling-plan tables presented in this paper, we have set
Y = 0.90. The value of eY,n,N-n for each n and N considered is given in

Table 1. The basis for choosing the sample size n will be discussed in

section 2.2, Once the sample x, ..., X, has been observed and x and s

1,
computed, the following specific acceptance criteria for the lot can be
applied.

Accept the lot if

Xi >L for i=l, ..., n 2.2)

and

_a ~
X-8) 0 xen 5 > L 2.3)

These criteria follow directly from the consideration that only those lots
that have no defective 1tems in them ave acceptable. The first condition
(2.2) specifies that there must be no defectives in the sample and the
second condition specifies that the sample must predict with a high degree
of confidence (90 percent) that there are no defectives in the remaining
portion of the lot.

2.2 Selection of Sample Size

In the classical operating-charucteristics apnrowh to indexing sampling

plans, the acceptance criteria and sample size are chosen so that the producer's




TABLE 1. FINITE LOT VARIABLES SAMPLING PLAN ACCEPTANCE FACTORS,
6y, m, N-n, FOR y = 0.90 AND ACCEPTANCE QUALITY
LEVEL PERCENTILES, AQLP, FOR 1 - a = 0.95

Lot Sampte B AQLP Lot Sample 2 AQLP Lot Sample 8 AQLP
f: Size Size {0.90} | (0.95) Size Size (6.90) (0.95) Size Size {0.90) (0.95)
: s 2 Tsed | 14939 | 15 2 3.3 PR S > [ 15.353 | 30.123

3 5.066 | 5.460 3 5. 3 5. 10.505
3 1.831 | 3.156 4 4. s a. >.652
5 3 5 4. 6.317
6 2 8.730 | 17.166 6 3. 6 3. 5.573
3 3.615 | 6.387 1 2 : 3 5.087
1 2481 | 4.183 8 2.7 8 3,260 | 4737
5 1.680 | 2.727 5 2 9 3.034 | 4.468
10 2 10 3.025 | 4.250
z 2 9.619 | 15.905 1 2 1 2931 | 4.066
3 000 | Toose , 12 2,847 | 3.905
4 2. 4.789 : > 13 2.770 | 3.761
5 I 3.621 3 5 14 2.696 | 3.627
d 1. 15 2.625 | 3.501
8 2 B 3 16 2553 | 3.378
3 ¢ 17 natg | 3.ss
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10 2. 3
8
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TABLE 1. (Concuded)

—
Lot Sample Lot Sample [} AqLp Lot Sample i} AQLP
Size Size . Size Size (0.95) Size Size {0.90} {0.95)
40 2 T, 50 2 60 30 2,903 | 3.581
3 6. 3 31 2.889 | 3.545
4 5. 4 32 2.869 | 5.511
5 1. 5 33 2.849 | 3.476
6 4 6 34 2.828 | 3.492
- 3 - 35 2.808 | 3.408
3 3. 8 6 2.787 | 3.374
9 3 9 5° 2.766 | 3.340
10 3 10 38 2.7a4 | 3,300
11 3. 11 39 2722 | 3272
12 5. 12 40 2,699 | 3.237
13 3, 13 31 2,676 | 3.202
14 3. 14
i5 3. 15 0 2 18, 36.901
16 3. 16 B -, 13.120
17 2.9 1” 4 5. 9.161
18 o 18 5 1. ~.558
19 o 19 6 4. 6,678
20 2 3.660 2 N 4 6.114
21 L N s 3 18
2 B 22 3 3. 5421
23 23 10 3. 5.189
2 2,703 2 1 s, 5.002
25 2,667 25 N 3. 1,846
2 2.629 2 2 15 3 1715
2 1.590 b 2. 14 3. 4,501
28 kN 15 3 1,802
29 2. 16
15 : 3 2. -
) 31 A 18
: 32 2 19
B 33 2. 20
6 34 R 2
3 60 N 18,
o ) by 3
n 1 5. f
3 5 1 o
N \ i 2
13 - 1, -
1 % 5. 4
15 5 5. i
16 10 % X
1 : . i
18 N i o
19 13 i o
20 14 .
1 15 3 A
2 I 3 ot
23 I i N
M 18 3. ‘\?
2 19 X o
2 0 5, I
> B ! "
28 n S i
R N sLoel o
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and consumer's risks satisfy certain constraints. Specifically, the
producer's risk, the probability of rejecting lots at the acceptable
quality level (AQL) must be less than or equal to 0 and the consumer's
risk, the probability of accepting lots at the rejectable quality level
(RQL) must be less than or equal to 1-y . For each sample size, the
acceptance region given in (2.1) is designed to give the consumer lots of
high quality. It is granted that (2.2) and (2.3) do not lead to the
classical protection criteria at the RQL mentioned above, but they do lend
themselves to a consumer's-risk interpretation. Specifically, only those
lots that the user predicts not to be of rejectable quality (one or more
defects) are accepted. Here, the consumer is "risking" a faulty prediction

at the 100y th contidence level.

Taking this as a proper consumer’s risk control, we ave frec to choose the
sample size to control the producer's risk. lleve we cun closely follow the
clussical interpietation, in that we require that lots with zero defects

will be aceepted at least 100 (1-a) percent of the time. In order to compute
this probability, however, we must specity the quality of the process the

tot comes from as measured by p, the average traction defective. lLetting
¢{*) be the cummulative standard normal distribution, u and ¢ the mean and
standard deviation of the manufacturing process, we have that p=é ((L-u)/0).
If we let b be the number of defects in the lot, we have that the sample

size, n, must be such that:
I laceepting lot [%s0, pi> 1-a (2.4)

[ the number of defects in the lot were not specified as a condition in

{2.4) and only (2.3) were used as an aceeptance criterion, then the




probability of accepting the lot could be computed directly as a function
of p using the non central t-distribution. However, this is not the case.
Furthermore, an exact expression for the left hand side of (2.4) is not
available in general. Fortunately, upper and lower bounds for the left
hand side of (2.4) are derivable. These bounds prove to be quite tight for
all values of n and N of practical importance in the sampling-plan applica-
tion. A theorem giving expressioms for the bounds is proved in Section 4
for general k. If we let P be the lower bound and require that n be such
that

P> i-a, (2.5)
then (2.4) is satisfied. This is exactly what has been done to generate
the values in Table 1. Specifically, Table 1 gives to each N and n tabula-

ted, the acceptance parameter § for ¥=0.90 and the acceptable quality

Y,n,N-n
level percentile (AQLP) defined as

Z, = (L-w)/o (2.6)

with p = O(ZP) for 1-a = 0.95,

It is interosting to note that the upper bound F for the probability of
acceptance is, for many combinations of N und n shown in Table 1, oqual to
P. It is for these combinations of values of n and M that (Z.4) is an exact
equality. This occurs for all n less than N/2 up to N=25, for all n less
thun N/3 up to N=50, for all n less than N/4 up to N=80 and for all n < 22
for N=90 and 100. In all cases the difference is less than 1% between P
and P for n < N/2, and less than 0.08% for a < N/3. Values for 1-a=20.90

as well as all values of P ave given in Fertig and Mann [S].

Beforn we procced with a proof of the theorem veferred to above, we give

an example of use of the tables.




. EXAMPLE OF USE OF THE TABLES

I

Conzider a lot of size 50. Suppose one wishes to reject the lot even if

it has only one defect. The binomial plan, which ignores the Tinits size of
the lot, would require a sample of size 114 in order to reject a lot ninety
percent of the time that is 2%=100 (1/50) % defective. The hypergeometric
plan would require a sample of size 45 to insure a 90% rejection rate.

Since it is required to have such high quality in the accepted lot, one
might wish to use a plan based on the assumption that the manufacturing
process producing the lot is very good. If variables data are being
recorded, and it can be assumed that these data are normally distributed,
then the procedure presented herein will apply. Specifically, referring

to Tablel, we find that a sample size of 9, for example, will guarantee a
95% acceptance rate if the manufacturing process mean is at least 5.147 ©
above the lower specification limit. We vould accept the lot if the corres-
ponding sample, Xyseens Xgs had no defects and, from Table 1, its mean was
at least 3.632 sample standard deviations above L. From this latter criterion
we see why the process mean must be better than 50 above L in order to

guarantve a 95% acceptance rate.

At this point, it might b appropriate to discuss a criticism of the above
procedure, namely cxpecting the normality assumption to hold at the extreme

tails of the process distribution (5 ¢ from the mean). In fact, however,

normality in the tails is not as necessary as one might first think to

maintain accuracy in the calculation of the probability of acceptance. The
normality assumption in the tails is used only in converting from the AQLP,
“t- Vo, to the process fraction defective, p. In fact, since p will tend

to oe very small, it can be off by many oraers of magnitude because of a

-10-




tack of normality in the tails and still] the probability of acceptance will
remain relatively unaffected. This can be seen by inspecting the binomial
probabilities in (4.4} and (4.5). The important parameter in the calculation
of the probability of acceptance is not the fraction defective per se, but
rather the acceptable quality level percentile (L-p)/0 which is directly
pfoportional to the noncentrality parameter in (4.4). It is this parameter
which must be controlled by the manufacturer as well as the process average
defective in order to guarantee a high probability of acceptance. It is

for this reason that the tables are given in terms of AQLP rather than the
AQL. Even if the quality is not as good as the AQLP, all that occurs is a
higher rejection rate, essentially what is occurring with the hypergeometric
plan wherein practically the entire lot is being screened. On the other
hand, if the process quality is as good as the AQLP, a substantial savings

in sample size has been effected.

Finally, we should remark that requiring very high manufacturing quality
levels is not unreasowable in most cases in which lots would be unacceptable

if they contained even a single defect.

S11-




4. THE BOUNDS ON THE PROBABILITY OF ACCEPTANCE OF A LOT

In this section we prove the following theorem which gives expressions for

bounds on the probability of acceptance of a lot of size N on the basis of

(2.2) and (2.3) when we specify fraction defective p in the process, number
of defectives k in the lot and confidence level Y that an accepted lot has

zero defectives. We note that this theorem may well be of interest outside
the sampling-plan context. It applies generally to truncated-sampling

applications and stratified-sampling problems.

Theorem

Let T (t|v,8) be the cumulative non-central t-distribution with v degrees
of freedom and noncentrality parameter §. Let zp be the 100p th percentile
of the standard normal distribution. Let © be the variables acceptance
factor defined by (2.3) for a lot of size N and sample of size n. Consider
lots thet have k defects and come from a process which produces fraction p

defective. The probability of accepting such lots satisfies:

P <P {accepting lot |k,p} <F (4.1)
wvhere
P = min (1,P") (4.2)
P = b, (4.3)
with
pt = H(Oik,1,N) [T 0RO ln1, vz )] (4.4)
B(O;p,n) P
and n " —
b = MOk,n,N) [H('“'Q Spln-t-1,-A-2 zp)J PP (4.5)
B(0;p,n) 9=1 B(0; p,n-%)
() 0)
H(Rik,n,N) = -2 ’;'2 , (4.6)
(n)

~12-




e = ()0 ap™, 4.7

o (ou_lw__u> e .8)
(n-%) (n-1)-nl0°

{ n(n-1) |
—

n-1+n0" |

m = max ,all intergers < 4.9)

The values of O in (4.4) and of G; in (4.5), as can be seen from (4.1),

depend upon the specified value of the confidence level Y as well as n and N-n.
Also, as will be seen subsequently, summation on £ in (4.5) should be taken

as zero if m=0, For this case E?F'and,therefore, the probability of accepting

the lot can be computed exactly.
To prove (4.1), we first note that since the events %=0 and 2#0 are disjoint
all-inclusive events, then
P {accepting lot |k,p} (4.10)
= P {accepting lot [%=0,k,p} P {2=0]k,p}
+ P {accepting lot |2%0,k,p} P {2#0]k,p}
Since we reject the lot if & 21, the second term on the right in (4.10) is

zero. When k is given, the probability distribution of & is hypergeometric.

Therefore,

P {2=0 |k,p} =

= H(0; k,n,N)
When %=0, the decision whether or not to accept the lot rests on the value of

the random variable L* = X-08. Thus, we sec that

YT AT T N T BRI AN e e gt e < o
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P {accepting lot |k,p} (4.11)

= P {L™>L[2=0,k,p} H(0;k,n,N)

Finding the bounds in (4.1) now reduces to finding bounds for the probability
that L* is greater than L, given that it is based on a sample with no defects
coming from a lot with k defects produced by a process with p fraction
defective. Since we assume the items in the lot are stochastically inde-
pendent observations from the process and since we are considering a series
of lots all from the same process, sampling from the lot and requiring the
sample to have zero defects is the same as sampling from the process and

still requiring the sample to have zero defects. That is
P {L*>L]2=0, X, p} = P {L™>L|2=0, p}

where the expression on the right can be computed assuming a sanmple of size
n is taken from a process of quality P with the restriction that no defects
are in the sample. But since the events £=% for £=0,.., n are disjoint

all-inclusive event for this procedure, we sec that

* P {L*>L }
p {L*>L|e=0,p} = _l'——l'mf 4.12
{ l p P §=OP ( )

n P{L*>L[g=2,p} P{g=2{p}

X
%=1 P {g=0|p}
In order to proceed, we need the following three lemmas.

Lemma 1  Consider a sample of size n; from a process of quality p. Let

*

1 1
c s T=3 2\‘.-—2
standard deviation (Xl— 3 Xi/n], S1 = t(ki—xl) /(nl-u)) ,

Ly = ')'('I—OS1 where X, and S, are the observable sample mean and

Then

P (L;>L|p) < 1T (/W) 0lny-1, /iy 2,)

-14-
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Lemma 2 P {L]>L[p} < P {L]>L]2,=0, P)

where ll is the number of defects in the sample of size ny

-

- .
Lemma 3 P 1L1>L|gl=nl,p} <P {L; >L|x1,..,xll=L, 2] =0,p}

where L;’ is formed by replacing all observations in the sample

that are less than L with the value L itself, (Thus, l{ , the

number of defects remaining, is zero.)

. . * . . .
The latter two lenmas follow easily if one notes that L1 is an increasing
function of each of the sample observations. Thus restricting these obser-

vations to be above certain limits increases the probability of observing an

*
L1 greater than L.

The first lemma follows from the definition of a non-central t-variate,

Specifically,
5 (LI>L|p] =P (i&—esl>L|p}

X, -u
mo Ly, b
1 o 1 o > /n6
51/0 N

. Lejt
Since 77_’"“p N

independent chi square variate divided by its degrees of freedom (nl-l), the

A X-m) /e is N(0,1), and sl/a is the squaré root of an

)
lemma follows directly by recalling that t = (z+6)/x;/v is a non-central t
2
variate it z is standard normal and X; is an independent chi square with

degrees of freedom V.

Since the distribution of #, given the sample comes from a process of quality
p, is binomial with parameters p and n, we see from Lemma 1 that (4.12)

implies

«15-
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P {L*>Ll2=0,p} < (1-T(/Ee[n-1,~/ﬁzp))/s(o;n,p) (4.13)

From (4.11) and (4.13) we see we can bound the probability of accepting the
lot from above by the expression for P* given in (4.4). This establishes

4.2).

In order to establish a lower bound or the probability of accepting the lot,
one could use Lemma 2 directly in (4.11). A sharper bound, however, will in
general be given by considering the summation in (4.12). Let L* be based on
an observable sample with £ defectives, Xl,..X£ <L and n-% nondefectives

1

¢ > X, = X ./(n- 2. e I
Xg 100000 X 2L Let X, izhlxl/(n 2, 3, (-3-1) {2 241

= .2
(X;-%)2.
We now seek to compute P{L*'>L]X1,...,XZ=L,2’=0,p} defined in Lemma 3. After

some algebra, we find that using Lemma 3 gives

P {X-85>L{2=2,p}

[ 2
< }(E_&__) £-1 n_
~Pln (‘(L)—_Q—-les]ROp
n2 623
This probability can be non-zere only if —— - —>0. Thus, £ must be
n-1

strictly less than n(n-l)/(n—l+p8 ). This is the value given for m in (4.9).
Since the number of defects, £,, in the portion of the sample to be used to

compute X, is zero, we have X, 2L, Therefore, we sce that for &<¥m,

P {X-u8>L]2=2,p}
s P 4,078, > no Qo) (8
(n-2) (n-1)- nEO

= 1
2 0,p (

1/2

|2

Since X, and SZ are based on an obscrvable sample of size n, = n-£ that
has zero defects, we can apply Lemma 2 and a relation similar to the first

half of this proof (in which the expression for p* is derived) to find that

=10~

:
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B P{X,-075.>L|p}
P {X-05>L]¢=%,p} < ——E—

Here, the probability in the numerator on the right is now computed with no
restriction on the number of defects in the sample of size n2=n-i. Therefore,

we can apply Lemma 1 to get for each &=1,..., m

(1-T(/80g [n-2-1,- /i-Tz )) (4.14)
P {X-05>L|2=2,p} < P
- B(0;p,n-2)
and
P {x-0s>L[% 2,p} = 0 (4.15)

for %= m+l, .., n.

From (4.15) and the definition of m, we see that the sum in (4,14) should be

taken as zero if m=0, For m>1, we see from (4.11), (4.12) (4.14), and (4.15),

that D is as given in (4.5). This completes the proof of the theorem.
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5. CALCULATION OF TABLE ENTRIES

The distribution of the random variate R (Y—Y1 N-n)/ S, given by

n,N-n=
(2.1),which providesone of the criteria for acceptance or rejection of a
lot of size N on the basis of a sample of size n, is considered by Fertig
and Mann [6]. They show that

p(Rn,r\‘-n<0) =

N-n N-n-1 2
= [1-9(2)] exp(-z°/2)T (M O]n-1,- vn z)dz, (4.1)
v2n JC»

where T(*|v,8) indicates the cumulative noncentral t-distribution function
with degrees of freedom and noncentrality parameter § and ¢(*) indicates
the cumulative standard normal distribution function with mean zero and

variance onc,

For each combination of N and n given in Table 1 P (Rn<0)n= .90 was solved
iteratively for O by use of Muller's [10] method, a mu;tipoint iteration
scheme which determines a next guess by using inverse parabolic interpola-
tion based on the previous two iterates and their midpoint. A first guess
for the value of 0O, was provided by the approximation suggested in Mann,
Schafer and Singpurwalla [9] and investigated by Fertig und Mann {6]. Sixty-
four point Hermite Gauss quadrature was used to evaluate the integral given
by equation (4.1), the function ¥(*) having been determined from

erf (x) = 29 (x/2)-1, x 20, with the error function ert (*) computed using

a double precision IBM subroutine and the noncentral t-distribution function
computod using an algorithm of B.L. Cooper [1]. Where the combination of
values of n and N-n agree with those of lahn [7], computed using the multi-

variate t-distribution, our computed values igree with his to the nuiver of

significant figures given,

-18-




The acceptable quality level percentile AQLP defined as zp = -(u-L)/o ,

with p equal to AQL, the acceptable quality level, and related to zp through
p = ¢(zp), was determined iteratively by requiring equality in (2.5) with P
given by (4.3). Muller's [10] method, discussed above, was used in this

iterative determination.

-19.
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